Linde has a long history of producing, processing, storing and distributing hydrogen: our founder, Carl von Linde, co-developed a method for producing hydrogen in the early 20th century, known as the Linde-Frank-Caro process. In this project, we will be responsible for the production of green hydrogen through a 200MW electrolysis system.
Aviation
Decarbonizing Aviation: Time for Hydrogen to Take Off
Aviation Is Flying Toward a Cleaner Future Thanks to Hydrogen
Exhaust emissions while airborne however, is only one side of the story: emissions from the entire airport infrastructure in constant operation mode is the other. Changing how we personally fly - or rather when we choose to fly - is our individual challenge. But changing how planes fly and how the aviation infrastructure operates so as to be less carbon intensive, is a challenge the industry must take on. And it has. Collectively, airlines are targeting net-zero carbon emissions by 20503. Hopes of hitting that target could well hinge on hydrogen with its high decarbonizing potential both in the air and on the ground. With its history and scope of expertise , Linde is fully onboard to help.
In the Air: Sustainable Aviation Fuels (SAF)
A promising pathway to decarbonizing aviation is to fuel today’s planes with synthetically produced, cleaner alternatives to kerosene - which is refined from fossil fuel feedstock such as crude oil. One production method of a more sustainable aviation fuel (SAF) employs a Power to Liquid (PTL) process, which relies on the supply of a sustainable carbon feedstock (biomass or other unavoidable industrial carbon dioxide sources) and the production of green hydrogen through electrolysis using renewable energy. The carbon and hydrogen are converted to synthesis gas, a mixture of carbon monoxide and hydrogen, which in turn is converted to longer chain hydrocarbons for the production of jet fuel or SAF via the Fischer-Tropsch Process.
Watch the video presented by WE Council and produced by BBC Story Works in collaboration with HyShiFT.
The HyShiFT Consortium
HyShiFT Consortium is a global collective of companies working together to produce Sustainable Aviation Fuel, known as E-Kerosene. The four stakeholders - Linde, Sasol, Enertrag, and Hydregen - are all part of the same story, which is a collaboration to create and use green hydrogen for the production of aviation (jet) fuel. Each company contributes their own expertise within the renewable sector: Enertrag produces renewable power from wind and solar resources, Linde produces green hydrogen and Sasol converts these two inputs into green aviation fuel through its FT reactor.
The type of sustainable aviation fuel that the Consortium will produce is known as PTL- Kerosene. This fuel aims in future to provide the aviation industry with a more sustainable fuel source. The aviation industry - especially long-haul flights - do not currently have feasible carbon neutral energy solutions and producing a sustainable liquid fuel (PtL Kerosene) is therefore the only currently feasible approach. HyShiFT’s target is to produce 50,000 tons/day of PtL Kerosene, which could fuel 2 flights between Germany and South Africa per day.
HyShiFT Stakeholder Roles
Linde
Sasol
Sasol is a global chemicals and energy company. We harness our knowledge and expertise to integrate sophisticated technologies and processes into world-scale facilities. Our leadership in FT technology enables us to play an important role globally in the decarbonization of multiple industries.
ENERTRAG
ENERTRAG has been generating green hydrogen from renewable sources in Germany since 2011 and is currently involved in the planning and implementation of green hydrogen projects in the order of several hundred MW. In the consortium, ENERTRAG will be responsible for generating the renewable energy for electrolysis.
HYDREGEN
HYDREGEN Energy (Pty) Ltd., (Hydregen) is an 80% black owned and controlled South African company, established to develop and invest in green hydrogen infrastructure and projects focused on the food-energy-water nexus and the just energy transition in South Africa. The company’s shareholders have played a leading role in South Africa’s renewable energy and green hydrogen sectors.
An Expert Perspective
"We can stay at home, or we can find a more sustainable solution" says clean hydrogen expert, Kate Macfarlane.
"The majority of SAF fueling today's planes comes from cooking oils and animal fats, or biomass, such as sugarcane and corn grain. However, such feedstocks are grown on arable land, which could potentially be used to grow food, so feedstock limitation becomes a challenge.
Projects such as HyShiFT provide a scalable solution to produce PtX Kerosene via green Hydrogen and Fischer Tropsch. With the EU and its member states establishing increasingly tightening quotas for SAF blending, PtL kerosene is acknowledged to be an important piece of the decarbonizing strategy going forward. We are proud to bring our years of hydrogen heritage and unrivalled expertise to this collaborative effort to find a solution for more sustainable flight."
In the air: The pursuit of Zero-Emission Flight
The promise of hydrogen’s zero-carbon emissions is also propelling the development of cleaner alternative propulsion technologies for future aircraft. Most of today’s hydrogen-powered flight concepts use fuel-cells to generate electricity or combust hydrogen in an engine - or both. But while theoretically tried and tested, hydrogen combustion in practice remains a challenge.
Safe and secure hydrogen storage on planes could inspire a complete rethink of aircraft design. Airbus is taking the lead in the development of hydrogen flight with ZEROe.
On the ground: Hydrogen Hub Airports
Efforts to decarbonize the aviation industry are not limited to reducing emissions from flights. Planes take off and land from the complex supportive ecosystems we know as airports. The facilities themselves need heating and lighting, passenger buses and other airport vehicles need fueled , and energy is needed for all of this. These hubs of activity could become hydrogen hubs - offering a way to achieve climate-neutral operations across the entire value chain.
Linde is using its expertise to study the potential for such a hydrogen hub in the city state of Singapore. The two-year study in cooperation with Airbus, Changi Airport Group, and the Civil Aviation Authority of Singapore will examine the infrastructure requirements and supply solutions to support hydrogen-powered aircraft and airport operations at Singapore’s Changi Airport. These requirements include the production, storage and distribution of hydrogen in aircraft ground services, operational equipment and refueling systems.